Portfolio Management 2010 Final Exam

Tuesday, May 11th, 2010

Extras: Calculator

Exam time: 5 hours

Maximum score is 75 points, Minimum required to pass is 37.5p. Avoid essay question answers > one page

- 1. Would you expect a well-diversified stock portfolio of firm adhering to sustainable environment norms to perform better or worse than a well-diversified portfolio of non-environmentally friendly firms? Why/why not? Discuss. (15p)
- 2. Define briefly following investment related terms/concepts (3p/subquestion, 15p max.)
- a) Loss aversion (behaviour of an individual investor)
- b) Volatility
- c) Equity premium puzzle
- d) Information ratio
- e) Limits to arbitrage

(total 15p)

3.Assume that you are in a CAPM-world. Calculate the missing items in the table.

Stock	Exp.return	Stand.dev.	Beta	Residual variance
A	0.11	0.24	-	0
В	0.15	_	2	0.20
C	1.0-	-0.20	1	0
D	0.05	-	0	0.16
<i>~</i> €?:	62 -62 + Eim)			(15 p)

4. Consider following data (% p.a.):

T. Colbider fortowing data (10 p.m.).								
	Expected	Standard	Factor beta on					
	return	deviation	F1	F2				
Factor 1 (F1)	5%	25%	1	0				
Factor 2 (F2)	2%	10%	0	1				
Stock X	6.5%	50%	1.5	-0.5				
Risk free rate	1%	0%	0	0				

a) Suppose a two factor APT holds with F1 and F2. Does security X provide an arbitrage opportunity? (5p)

b) Suggest the best possible portfolio for an investor who prefers portfolio standard deviation equal to 10% p.a. (10p)

(total 15p)

Please-turn page!

Formulas:

(#1):
$$E[\mathbf{r}_{m}] - \mathbf{r} f$$

$$w_{m} * = \frac{\mathbf{E}[\mathbf{r}_{m}] - \mathbf{r} f}{\mathbf{A} * \sigma^{2}_{m}}$$
(#2):
$$w_{S} = \frac{\sigma^{2}_{B} - \sigma_{B,S}}{\sigma^{2}_{B} - 2\sigma_{B,S} + \sigma^{2}_{S}} + \frac{[E_{S} - E_{B}]}{\mathbf{A}(\sigma^{2}_{B} - 2\sigma_{B,S} + \sigma^{2}_{S})}$$

where E_S , E_B expected returns on stocks and bonds, and σ^2_S , σ^2_B , $\sigma_{B,S}$ are variances and covariance between S and B. rf is the riskfree rate. A is the coefficient of constant relative risk aversion.

(#3):

$$W_{S} = \frac{[E_{S} - rf]^{*} \sigma^{2}_{B} - [E_{B} - rf]^{*} \sigma_{B,S}}{[E_{S} - rf]^{*} \sigma^{2}_{B} + [E_{B} - rf]^{*} \sigma^{2}_{S} - \{(E_{S} - rf) + (E_{B} - rf)\}^{*} \sigma_{B,S}}$$

Note: $Cov(S,B) = Corr(S,B) * \sigma_S * \sigma_B$ and $w_B = 1 - w_S$.

(#4): 1-factor market model holds (in excess returns)

$$\mathbf{r}_{it} = \alpha_i + \mathbf{r}f + \beta_i * (\mathbf{r}_{mt} - \mathbf{r}f) + \mathbf{e}_{it}$$

Systematic risk Unsystematic risk

 α_i measures the superior (abnormal) return that the active security may have! e_{it} is assumed to have mean zero and has variance of ${\sigma_{ie}}^2$. Applying to #3. with S=x=the active security and B=y=passive benchmark:

$$\begin{aligned} & \text{Ex} = \alpha_{\text{x}} + \text{r}f + \beta_{\text{x}} * (\text{E}[\text{r}_{\text{m}}] - \text{r}f) & \text{Ey=E}[\text{r}_{\text{m}}] \\ & \text{Var}(\text{x}) = \beta_{\text{x}}^2 * \sigma_{\text{m}}^2 + \sigma_{\text{xe}}^2 & \text{Var}(\text{y}) = \sigma_{\text{m}}^2 \\ & \text{Cov}(\text{x,y}) = \text{Cov}(\text{x,m}) = \beta_{\text{x}} * \sigma_{\text{m}}^2 \end{aligned}$$

$$w_{x} = \frac{\alpha_{x} * \sigma_{m}^{2}}{\alpha_{x} * \sigma_{m}^{2} * (1 - \beta_{x}) + [E[r_{m}] - rf] * \sigma_{xe}^{2}}$$
and $w_{y} = w_{m} = 1 - w_{x}$.

and
$$w_y = w_m = 1 - w_x$$
.
 w_0 $w_0 = \frac{\alpha_x / \sigma_{xe}^2}{1 + (1 - \beta_x)^* w_0}$ where $w_0 = \frac{(E[r_m] - r_f) / \sigma_m^2}{(E[r_m] - r_f) / \sigma_m^2}$

#5.
$$\beta_{p}^{*} = \frac{E[r_{m}] + a + b\alpha_{m} - rf}{A^{*}(1-\rho^{2})^{*}\sigma^{2}(r_{m})}$$

#6. Performance evaluation: Sharpe (Rp-Rf)/σp Treynor (Rp-Rf)/βp, Jensen alpha = Rp-[Rf+βp*(RM-Rf)]